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We study crack propagation in locally quenched crystals by two- and three-dimensional numerical simula-
tions of a deterministic spring model. Controlling applied stress and material specific parameters, we find that
a cellular structure bounded by cracks forms and the size of cells is selected through relaxation processes. We
also find that numerical results are well represented with a scaling relation including two different regions of

crack growth.

PACS number(s): 62.20.Mk, 81.40.Np, 75.70.Kw

When a brittle material at high temperature is quenched
inhomogeneously, propagating cracks are often observed due
to the thermal stress induced in the material. If the stress is
applied with a localized temperature gradient and the dis-
torted zone is continuously shifted in a direction at a constant
velocity, resulting crack tips are expected to stay within or
near the zone, as known for the growth fronts in directional
solidification experiments [1]. Accordingly, the mean veloc-
ity and direction of propagating cracks can be controlled,
unlike the ordinary crack formations by external loads. Re-
cently Yuse and Sano [2] reported well-controlled experi-
ments on the crack formation of glass plates by applying
directional thermal stress. They prepared very thin glass
plates and heated them up first. When the plate was dipped
into cool water to make a directional load locally, they found
a variety of propagating crack patterns including oscillatory
and parallel straight cracks with good reproducibility. They
also found that cracks choose an optimal spacing between
them depending on control parameters [3] as seen in the
wavelength selection of directional solidification. But the
origin of the instability of crack growth and mechanism of
the crack pattern selection still have not been understood
well [4-8]. In this Rapid Communication we study a simple
spring network model to describe the crack formation of a
brittle material being inspired by those experiments. And we
discuss the pattern selection caused by crack growth for two-
and three-dimensional cases.

Let us consider first elastic properties of a simple cubic
(or square) crystal, which is subject to thermal stress, with
nearest-neighbor and next-nearest-neighbor interactions.
Force applied between “atoms” in the crystal is assumed to
be represented by Hookean springs, where the springs can be
freely rotated around the atoms [9,10]. We do not take into
account acoustic vibrations in the crystal at all, because the
speed of cracks is thought to be extremely slower than that of
sound in the phenomena we are concerned with here. Let
k, be the spring constant for nearest-neighbor interactions
and k, for next-nearest-neighbor interactions. Then one can
easily obtain the components of elastic tensor C;j; of the
two-dimensional (2D) square crystal [11,12]:
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and the other coefficients are zero. Here i and j exclusively
take one of x and z. For the three-dimensional simple cubic
crystal with lattice constant a,

ki+ 2k,
i a, > (3)
ks
Ciijj=Cujji=Cje = 5 (4)

where i and j are one of x, y, and z as well. Note that the
lattice constant a of the spring network does not affect the
elastic property in the two-dimensional system.

Thermal stress is applied to the crystal as in the experi-
ments we mentioned. First we assume that temperature 7 at
each spring is given by the following function of “vertical”
position z and time ¢:

AT
T(z,t)=— Ttanh{ﬁ[z—zo(t)]}, (5)

Zo(t):Vt, (6)

where AT is the temperature difference applied between the
top and the bottom of the specimen, V is the velocity of the
zone where failure takes place. Here S is a parameter that
corresponds to the inverse of thermal diffusion length
d(=1/B8) = D/V (D is the thermal diffusion constant).
Since the system is assumed to be quasistatic, 8 is the only
parameter related to the dipping velocity V. In numerical
simulations, we simplify (6) as z((0)= dzn, where n is the
number of iterative steps and 6z a small number compared to
the lattice constant (8z=a/10 in our simulations). Accord-
ing to the temperature distribution, the equilibrium length
ao(z) of springs is determined as

ag(z,n)=ag[1+aT(z,n)], (7)

where a is the lattice constant of stress-free crystal and «
the thermal expansion coefficient. Since the springs have an
extent, temperature is evaluated at the middle point of each
spring.

If the spring network is not in its equilibrium configura-
tion, the restitutive force F at node i is represented by
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where n.n. denotes nearest-neighbor nodes and n.n.n. next-
nearest-neighbor nodes. The equilibrium configuration of the
springs network is then calculated by a simple relaxation
method so that F;=0 at every node i. In our simulations,
relat4ive error of the displacement of nodes was smaller than
1077,

Here we introduce a deterministic rule for breaking
springs (bonds) [13,14], rather than stochastic ones [15-17],
according to the applied thermal stress. When the force given
on a spring exceeds a critical value, it breaks, i.e., the corre-
sponding spring constant changes from k; or k, to zero,
which can be regarded as a microscopic interpretation of the
failure criterion for an ideal brittle material [18]. Let f. be
the critical force for breaking the bonds. In short, the follow-
ing procedure is carried out in each time step n: “Calculate
the force for every bond. If more than one bond have loads
larger than f., break one which has the maximum force and
do the relaxation processes to find an equilibrium configura-
tion again, until no bond is broken.”

Computer simulations were carried out for both 2D and
3D cases. In our 2D simulations rectangles of up to
256X 512 nodes are used as model specimens to be broken.
For 3D cases, we carried out simulations with rectangular
parallelpipeds of up to 48X 48X 48 nodes. On the boundaries
of the specimens, no constraint is applied to the motion of
nodes. In the continuum limit of this model, therefore, exter-
nal pressure on the boundaries is zero. As the parameters
related to elastic property, we choose k;=1, k,=0.7 for 2D,
and k;=1, k,=0.5 for 3D, in the following study. From the
consideration of direction dependency of Young’s modulus
E, one can find that the elasticity of the model materials is
anisotropic with these values. As long as we used a modest
ratio of k, /k,, say 0.5-2, we could not find apparent differ-
ences in resultant patterns. However, in general, we expect
that the preferred direction of crack propagation can be con-
trolled by changing this ratio [8]. Furthermore, the growth
direction may also be influenced by lattice anisotropy during
failure, as known in diffusion-limited aggregation (DLA) on
a lattice [10]. The effects of such anisotropic properties of
materials on the crack formation, especially in a large size
system, is one of the issues for our future study.

A number of tiny cracks were prepared randomly at the
bottom of the lattice to make initiation of cracks easier. For
small applied thermal stress, the initial cracks do not grow at
all. Increasing it, a transition from nonpropagating cracks to
propagating cracks takes place, and cracks run in the z di-
rection dividing the lattice into several pieces. According to
control parameters such as a and d(=1/8), the cracks seem
to autonomously choose their mutual positions or the number
of domains bounded by them (see Figs. 1 and 2). In Fig. 1,
two typical crack patterns are shown for different thermal
diffusivities. Here let A be the typical (mean) domain size
separated by the cracks. Since propagating cracks are repul-
sive to each other in our model, they do not merge in 2D
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FIG. 1. Typical two-dimensional crack patterns for ao=1,
d=1, AT=2, f.=0.0025, and (a) a=0.005 (b) «=0.02. Only
broken bonds are shown.

cases, while crack planes in 3D may intersect when the angle
between them is sufficiently large. Therefore, with too many
initial cracks, there are competitions between them, e.g., a
screening effect of cracks as seen in DLA, and some of the
branches will survive at the end. On the other hand, if the
number of initial cracks is fewer than an optimal number,
nucleation of crack tips (planes) occurs and some of the run-
ning cracks split to adjust the number. Even without initial
cracks, initiation of cracks occurs near the center of the strip,
and then the crack grows and splits. That is, there is a selec-
tion mechanism of \, and the cracks can choose it by them-
selves from any initial conditions.

Propagating cracks may have some degree of freedom in
their configurations by changing the vertical (z) position of
the tips and morphology of the individual cracks other than
horizontal spacing . In fact, in the steady state of crack
growth in 2D, spontaneous branching and oscillatory motion
of cracks are observed, probably because of the frustration
between different stable configurations. And such behavior
of crack tips has a nonlocal effect which seems to initiate
instabilities of the neighbor cracks as seen in Fig. 1(b). In
those cases, for a given set of parameters, the obtained values
of \ have some deviation along with a mean value over time.
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FIG. 2. Three-dimensional view of a typical three-dimensional
crack pattern. Broken bonds are shown for ay=1, a=0.0085, AT
=2, d=1, and f.=0.0025.
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For straight cracks as shown in Fig. 1(a), A\ can be deter-
mined uniquely in its steady state, though the selected A\
seems to be slightly influenced by initial conditions, i.e., the
number of initial cracks, as shown by numerical evidence.
However, the deviation arising from initial conditions gives a
minor contribution to spacing selection in our numerical
simulations. With this discrete modeling of extremely brittle
material, nucleation of new crack tips can take place easily
even without additive noise. If the initiation of new cracks
needs largé activation energy, that is likely in real homoge-
neous materials, crack configuration may be trapped in a
metastable state, and the resultant A\ would be more sensitive
to initial conditions. We would like to discuss later how A is
determined in our simulations.

In 3D, the time required to enter the steady state seems to
be much shorter than that in 2D, and the deviations of \
seem to be also smaller. In this case, the cracks take a co-
lumnar structure grown in the z direction as shown in Fig. 2,
whose diameter depends on control parameters. We define
N\ as the average diameter which is evaluated from the aver-
age area per each cell by taking cross sections of the 3D
lattice in the x-y plane. Unfortunately we could not present
here the distribution profile of N, which seems to have a
sharp peak, owing to our very limited system size.

In order to characterize size selection during crack forma-
tion, we define a couple of independent dimensionless pa-
rameters in this model. One is the ratio of thermal diffusion
length and A defined as

L=pr=7, ©)

and the other is

aATEag ?\!2
Re—mF—

fe ’

where E is Young’s modulus which may depend on the di-
rection of the applied force, n the dimension of space. Criti-
cal force f. is related to the critical stress intensity factor
K§ of the material as K$=f./a%~¥?, thus R should be iden-
tical, except for some numerical factor, to that introduced by
Sasa et al. in their theoretical stability analysis of propagat-
ing cracks [7]. That is, using K}, the second dimensionless
parameter could be written as R’ = «ATE Y\/K¢ in terms of
conventional fracture mechanics. Physical interpretation of
the parameter R is, therefore, the ratio of the critical stress
intensity factor (tolerance of material) and the external load
in the same form as K.
Let us assume the following relation between R and L:

(10)

R=f(L), (11)

where f(L) is a function which saturates for large L, because
1/R should not diverge for a finite applied load even when
L —o0, Using L and R, the crack pattern in Fig. 1(a) was
obtained for L=12.8, R=0.050, Fig. 1(b) for L=4.9,
R=0.020, and Fig. 2 for L=6.9, R=0.010. In Fig. 3, the
relation between L and 1/R is shown for several independent
numerical results by changing a and d(=1/8) as control
parameters. In the plot, we also present the data for which
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FIG. 3. Scaling plot of numerical results by changing a and
d(=1/B) as control parameters. « is in the range between 0.003
and 0.02, B between 0.02 and 1.5. Each point corresponds to inde-
pendent computer simulations. Black circles represent the results
for 2D and white rectangles for 3D.

only initial numbers of cracks were different. As seen in the
figure, all independent data fall into a curve and Eq. (11)
represents the numerical results well in both 2D and 3D
cases. Although the scatter of the points seems to be large
due to deviations of resultant \, looking at Fig. 3, there is a
linear region in f(L) for L <10, and it gradually saturates to
a constant value for large L. In other words, there are at least
two characteristic regions of crack growth, say, thermal-
diffusion-limited (L<10) and temperature-difference-
limited (L>10) regions. Thus the asymptotic form of the
scaling function f would be

LY for small L,
fL)= (12)

const for large L,

where y=1 in our model. The dependency of y on models,
however, has to be studied as well as the comparison with
experiments. In glass experiments [2,3], L is usually larger
than 10 because it is not easy to have glass plates cooled
down uniformly in the air with a long thermal diffusion
length. Thus the crossover mentioned above may be hardly
observable in real cases. Unfortunately to our knowledge the
quantitative relationship between R and L for multicrack ex-
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FIG. 4. Distribution of the number of sides. Eighteen cells ob-
tained from six independent simulations are examined to make this
plot.
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periments has not been reported so far. If A=1, A~d*3,
making other parameters fixed for L <10. For very small d,
i.e., with less thermal diffusivity, A will not depend on d.
When AT is chosen as a control parameter, our results yield
that A\~AT 2?3 for small L, otherwise A~AT 2.
Directional crack propagation in 3D has an aspect of grain
growth in 2D [19], because the 2D section of the three-
dimensional column has a cellular structure which resembles
grain structures frequently seen in nature and the structure
forms in a relaxation process. From this point of view, co-
lumnar joints of rocks are thought to be one example of grain
growth induced by crack propagation in 3D. Distribution of
cell shape is one of the important measures to characterize
cellular structure in grain growth problems. We took the in-
tersection of the three-dimensional column in the x-y plane,
and counted the number of sides of cells n for several inde-
pendent computer runs. In Fig. 4, the histogram of ng is
shown, where the cells facing boundaries were excluded
from the counting. It is clear that a hexacylindrical shape is
selected during the formation of the cellular structure even
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when the material is anisotropic. This indicates the existence
of an effective surface tension to make the crack surface
smaller. Dynamics of the grain growth caused by cracks,
which might be an interesting topic, is our future problem.
To summarize this Rapid Communication, we have per-
formed computer simulations of two- and three-dimensional
crack propagation using a deterministic spring network
model. We found that the spring network model works suc-
cessfully for the fracture formation of brittle materials. In
directional crack propagation, a cellular structure forms in
the steady state, and the characteristic size of cells is well
represented by a scaling relation that has a crossover at
(crack separation)/(diffusion length) =10. We also discussed
3D directional crack formation as a problem of grain growth.
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FIG. 2. Three-dimensional view of a typical three-dimensional
crack pattern. Broken bonds are shown for a,=1, a=0.0085, AT
=2,d=1, and f.=0.0025.



